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Abstract. We build a one-to-one correspondence between some polyominoes, called 
parallelogram polyominoes, and some heaps of segments. Then we derive explicit 
expressions for the generating function of convex polyominoes, according lo their height, 
width and area. We also enumerate two subsets of convex polyominoes, namely the directed 
and convex polyominoes and the parallelogram polyominoes, according to these three 
parameten. We also study generating functions of polyominoes having a fixed width. 

1. Introduction 

Polyominoes are classical objects in combinatorics. They are also studied in physics 
as special cases of self-avoiding polygons that are used to model crystal growth or 
polymers. A polyomino is a finite union of elementary cells whose interior is connected 
(figure 1). 

A polyomino P is column- (respectively row-) convex if the intersection of P with 
any vertical (respectively horizontal) line is connected. A convex polyomino is a 
polyomino which is both column- and row-convex (figure 2). We define three subclasses 
of convex polyominoes: parallelogram polyominoes (also called staircase polyominoes, 
figure 3), stack polyominoes (also called pyramid polyominoes, figure 4), and directed 
and convex polyominoes (figure 5 ) .  One or two corners of such polyominoes are also 
corners of their bounding rectangie. 

The perimeter, or height and width generating functions of these subsets of poly- 
ominoes are algebraic functions (see Temperley 1952, Polya 1969, Delest and Viennot 
1984, Lin and Chang 1988). Some area generating functions were given for stack 
polyominoes (Temperley 1952), and for parallelogram polyominoes (Delest and Fedou 
1989, Brak and Guttmann 1990, Lin and Tzeng 1991). For the area generating function 
of convex polyominoes, only asymptotic results had been found (Klamer and Rivest 
1974, Bender 1974), until Lin (1991) gave a first exact formula. 

Figure I. A polyomino. Figure 2. A con~ex polyomino. 
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Figure 3. A parallelogram polyomino. Figure 4. A stack polyomino 

Figure 5. A directed and convex polyomino 

We give here the generating function of parallelogram polyominoes, directed and 
convex polyominoes, together with a new formula for the generating function of convex 
polyominoes, according to their height, width and area. Our work is based on a 
one-to-one correspondence between parallelogram polyominoes and some heaps of 
segments; it uses various decompositions of convex polyominoes into parallelogram 
polyominoes and stack polyominoes (see Bousquet-Mtlou and Viennot 1990, Bousquet- 
M8ou 1991). Note that a second formula for the generating function of convex 
polyominoes can be obtained in a different way (Bousquet-Mklou 1990, 1991, 1992). 

Constructing a one-to-one correspondence between the objects one wishes to 
enumerate and some heaps of pieces (these pieces can be segments, but also many 
geometric or algebraic structures) is of special interest: the set of heaps of pieces has 
algebraic properties that often allows us to  write theorems, called inversion theorems, 
that give the generating functions of some subsets of heaps. 

This method appears to be successful in the case of convex polyominoes, but was 
also used previously by Viennot to enumerate directed animals on the square lattice 
(Viennot 1985, Gouyou-Beauchamps and Viennot 1988). Directed animals have been 
studied by many physicists. Some other exact results about their enumeration were 
given by Demda er al (1982), Hakim and Nadal (1983) and Dhar (1982, 1983). 

Notation. Let the generating function of a given subset Y of polyominoes be 

where P,,, is the number of polyominoes of Y having width n, height m and area 
a. We use the standard notations: if n Z 1, 

( a ) ,  = ( I  - a ) ( l -  aq)  . . . (1  -a¶"- ' ) .  

Let [ n ] !  denote the classical q-analogue of n!, that is ( q ) J ( l - q ) " .  By convention, 
( a ) .  = 1 and [n]! = 1 if n S O .  
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2. Parallelogram polyominoes and heaps of segments 

The theory of heaps of pieces was developed by Viennot (1986) and is equivalent to 
Cartier and Foata's partially commutative monoids theory (1969). Heaps of segments 
are an example of this theory. 

Intuitively, a heap of segments is built by putting a finite number of solid segments 
one upon the other. Each segment has a finite level n 3 0  and a position [a ,  b l ,  with 
1 < a S b, and lies either on the horizontal axis or upon some part of another segment 
having level n - 1 (figure 6). Let E and F be two heaps of segments. The superposition 
of E on F is obtained by putting E above F, and is denoted F'JCIE. 

A segment of a heap is minimal when it has zero level, and maximal when no other 
segment covers it-ven partially. A heap is said to be trivial when all its pieces are 
minimal (and maximal). 

A semi-pyramid is a heap of segments having a unique maximal segment, whose 
position is [I, b ] ,  where b >  1. 

We put on a segment S of position [a ,  b ]  the weight v ( S )  = xyb-'qb. and on a heap 
E composed of the segments S,, . . . , S. the weight u ( E )  =ll,,j,. v(S,) .  

Then, we describe a one-to-one correspondence f between the parallelogram poly- 
ominoes and the semi-pyramids such that, if P is a parallelogram polyomino having 
width n, height m and area a, U( f (P)) = x"y"-'q". 

Briefly, let P be a parallelogram polyomino, and C,, . . . , C,, be its columns (from 
left to right). For 1 s i s  n, let bi be the number of cells of C,. Let a ,  = I, and, for 
2 s  is n, let ai be the number of cells by which the columns Ci-, and C, are 'glued'. 
Then, we build f(P) by placing a segment having position [a., b.], then a segment 
having position [ a n - , ,  bn- , ] ,  and so on until we place the last segment, whose position 
is [ a , ,  b , ]  (figure 7). 

Level  

3 

2 

1 

0 * 
Position 

Minimoi segments 

Figure 6. A heap of segments. 

Fizvre 7. A parallelogram polyomino and the associated semi-pyramid. 
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Such a bijection is of special interest because there exist some inversion theorems 
that give the generating functions of the heaps of segments E satisfying one or both 
the two following conditions: (i) every maximal segment of E has its position in a 
given set 4; (ii) every minimal segment of E has its position in a given set A, 

For example, the generating function of heaps of segments satisfying (i) is 

where Y is the set of trivial heaps and T('A) is the set of trivial heaps having no 
segment in A. We denote by IF1 the number of segments of the heap E 

Let us prove this result. We have 

where the first sum is taken over all the heaps E' that can be obtained by putting a 
heap E having all its maximal segments in A upon a trivial heap F, and the second 
one is taken over all such heaps E and F satisfying E'= F Z E .  The heap E' being 
given, we notice that F must be included in the set of minimal segments of E', and 
must contain any minimal segment of E' that is simultaneously maximal and not in A. 
Then, the choice of F determines uniquely the heap E. But 

I: (-1)lFI= 0 
min(E')nmar(h')n'&cFcmin(E'i  

unless every minimal segment of E' is also maximal and not in A, which means that 
E' is trivial and has no segment in A. In this case, F = E' and E is the empty heap. 

Then, we prove that the 'alternating' generating function of trivial heaps is: 

We can now derive the generating function X ( x ,  y, g) of parallelogram polyominoes 
from theorem ( l ) ,  since a semi-pyramid is a heap having all its maximal segments in 
!he set .& ={[I, .!, !!a I!. we get: 

where 

and 

Remarks. ( 1 )  The width and area generating function of parallelogram polyominoes 
(special case y = 1 )  has been given by Delest and Fedou (1989). The perimeter and 
area generating function (case x = y )  was found by Brak and Guttmann (1990). 
Recently, Lin and Tzeng (1991) generalized their result and obtained the width, height 
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and area generating function of parallelogram polyominoes. Their formula looks at 
first sight more complicated than ours, but it is quite easy to check it is, in fact, the 
same one. 

(2) In the case y = 1, :he series X is the quotient of two q-analogues of Bessel 
functions: 

where 

3. Directed nod convex polyominoes 

We show that a directed and convex polyomino can be split into a parallelogram 
polyomino P, and a stack polyomino P2,  so that if P2 has height n, then the first 
column of P, has height n + 1 (figure 8). 

Thus, to  enumerate directed and convex polyominoes is equivalent to enumerating: 
first, parallelogram polyominoes whose first column has a given height; 
and then, stack polyominoes with a given height. 

We use again theorem ( 1 )  to solve the first problem: the first column of a 
parallelogram polyomino has height n if and only if the maximal segment of the 
associated semi-pyramid has position [ l ,  n l .  Thus, the generating function of 
parallelogram polyominoes having their first column of height n is 

where N ( x )  is the series defined by (5). 

polyominoes is linked to the enumeration of Ferren diagrams (see Andrews 1976): 
The following classical expression of the generating function T ( x ,  y ,  q )  of stack 

Figure 8. Dewmposition of a directed and convex 
polyomino. 
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Then, we prove easily that the generating function of stack polyominoes of height 
n is given by 

where T. denotes a polynomial in the two variables x and q, with positive integer 
coefficients, defined by the following recurrence relations: 

To= 1 T, = 1 

T, = 2 Tn-, + (xq'- '  - 1) Tn-> (12) 
if n 2. 

Combining (9) and (11) (and also using (10) in the computation), we finally obtain 
the generating function Y(x, y, q )  of directed and convex polyominoes: 

R(x)-  $(x) 
Y = y  

N ( x )  

where N ( x )  and $(x) are the series defined by (5) and ( 6 )  respectively and 

4. Convex polyominoes 

Let P be a convex polyomino and R be the smallest rectangle containing P. Let [N, N'] 
(respectively [W, W']: [ S :  S'j: [E; E']) be the intersection of P with the upper (respec- 
tively left, lower, right) border of R, the points N, N', W, W ,  S ,  S', E, E' being taken 
counterclockwise (figure 9). 

We define three subsets of convex polyominoes. Let d be the set of convex 
polyominoes such that the vertical line passing by N is at the right of the vertical line 
passing by S. Let d' be the set of convex polyominoes such that the vertical line 
passing by S' is at the right of the vertical line passing by N' (figure 10). Let 93 be the 
intersection of d and SB'. 

Note that the symmetric, up  to any vertical axis, of a polyomino of 92 is a polyomino 
of d' (and vice-versa), and that the union of d and &'is the set of convex polyominoes. 

These remarks imply that the generating function Z(x, y, q )  of convex polyominoes 
is 

Z = 2 A - B  (15) 
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Figure 10. Elements of (left to right) d, .& and 98. 

where A(& y, q )  (respectively B ( x ,  y ,  4)) is the generating function of the convex 
polyominoes of 99 (respectively 9). 

We derive from (11) that the generating function of the polyominoes of 9 is 

where T, is the polynomial defined by (12). 
Let P be a polyomino of Sp. It can be divided (figure 11) into three polyominoes, 

a parallelogram polyomino PI and two stack polyominoes P2 and P,. If P2 (respectively 
P3) has height n ( m ) ,  then the first (last) column of PI has height n + 1 ( m  + 1). 

Thus, to enumerate convex polyominoes is equivalent to enumerating: 
on the one hand, parallelogram polyominoes whose first and last columns have 

on the other hand, stack polyominoes of given height. 
We already solved this second problem when we enumerated directed and convex 

polyominoes (see (11)). Once more, we use our bijection between parallelogram 
polyominoes and semi-pyramids and a new inversion theorem to solve the first problem: 
the generating function of parallelogram polyominoes whose first (last) column has 
height n ( m )  is 

given heights, 

Figure 11. Decomposition of a polyomino of d. 
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where N(x)  is the series given by ( 5 )  and N,,, and N: are polynomials in the three 
variables x, y and q, defined as follows: 

No=O NI = 1 

N. = ( 1 + y - xq"-') N.-I - yN.-, 

N:=O if m < n  

(18) if n r 2  

N; = -xy"-'q" (19) 

N: = X2y"-'q"+m " - . (xq" )  if n < m. 
Combining (l l) ,  (16) and (17), we finally obtain the generating function Z(x, y, q )  

of convex polyominoes: 

where 

the polxnomials T,,, N, and N: are defined by (U) ,  (18) and (19) and the series 
N(x), N(x), R ( x )  and B(x) by ( 5 ) ,  (6), (14) and (16) respectively. 

5. Convex polyominoes having a fixed width 

We study more thoroughly generating functions of polyominoes having a fixed width. 
These functions are rational series in y and q. We use a correspondence between some 
heaps of segments and some binary trees to get the following results, where L n / i ]  
denotes the integer part of n / i .  

The generating function of parallelogram polyominoes having width n is 

where xn is a polynomial in the variables y and q with integer coefficients. Moreover, 
m y ,  1) = 1 (24) 

and, if n t 2, 

The generating function of directed and convex polyominoes having width n is 

where v, is a polynomial in the variables y and q with integer coefficients. Moreover, 
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The generating function of convex polyominoes having width n is 

where zn is a polynomial in the variables y and q with integer coefficients. Moreover, 

When enumerating those polyominoes according only to their area and width 
(special case y = l ) ,  we get simpler results by studying directly the formulae (4) ,  (13) 
and (20). 

The width and area generating function of parallelogram polyominoes having width 
n is 

where 2" is a polynomial in the variable q with integer coefficients. 

width n is 
The width and area generating function of directed and convex polyominoes having 

where 9" is a polynomial in the variable q with integer coefficients. 
The width and area generating function of convex polyominoes having width n is 

where 
We do not have any explicit formula for the numerators X., Y, and in, but we 

were able to evaluate the first values, thanks to the formal calculus system MAPLE. 
Those results are remarkable: we %onjecture that these polynomials have positive 
coefficients and are unimodal. The X .  polynomials seem to be symmetric. 

Examples. The first values of the in polynomials are: 

is a polynomial in the variable q with integer coefficients; 

k , = l  g2=1 g3 = 1 + q + q2+ 43 

g4= 1 +2q+4q2+6q3+7q4+6q3+4q6+2q '+  q8 

g5 = 1 +3q+8q2+ 17q3+30q4+45qs+ 58q6+ 66q7+66q8+ 58q9+45q''+3Oq" 

+ 17q'2+8q"+3q14+q's. 

The first values of the Fn polynomials are: 
1 

?,=l Y , = l f q  F3= 1+3q+3q2+2q)+q4 

E,= 1+5q+9q2+ 14q3+ 18q4+ 17qs+ 13q6+7q7+3q8+q9 

P5 = 1 + 7 q +  17q2+37q3+70q4+ 109qs+ 147q6+ 173q7+ 180q8+ 165q9+ 133q10 

+94q"+ 57q'2+ 29q"+ 12q14+4q'5+ q'6. 
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The first values of the in polynomials are: 

2, = 1 i 2 = 1 + 2 q + q 2  23= 1+6q+12q2+12q3+7q4+2qS 

i,= 1+ llq+43q2+95q3+ 150q4+ 186q5+ 181q6+ 137q7+79qs +33q9+10qta+2q". 

Fedou (1991) has just shown that the 2" poly?omial is the generating function of 
certain braids. As a corollary, he shows that X .  has positive coefficients and is 
symmetric. 
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